ADB: An Efficient Multihop Broadcast Protocol Based on Asynchronous Duty-Cycling in Wireless Sensor Networks

Yanjun Sun^{*‡} Omer Gurewitz[†] Shu Du[‡] Lei Tang^{*} David B. Johnson^{*}

*Rice University [†]Ben Gurion University [‡]Texas Instruments

Mobile Networking Architectures

Asynchronous Duty Cycling

 Nodes are battery powered and wireless
Each node decides its own wakeup schedule, wakes up asynchronously

ADB: Asynchronous Duty-Cycle Broadcasting

Multihop broadcast over asynchronous duty cycling

- High power efficiency
- Low packet delivery latency
- High packet delivery ratio

Existing Solutions

Challenges and Problems

Wastes energy

- S still stays on after all neighbors are reached
- R1 transmissions do not reach any new neighbors

Increases latency

- R1 transmissions block B from forwarding the broadcast to C
- Reduces delivery ratio
 - Transmissions from hidden nodes R2 and B collide at C

ADB: Use Unicast To Do Broadcast

- Unicast to each node when it wakes up
- Go to sleep if no more neighbors to reach

ADB: Disseminate Progress Information

- Append progress information as footer to each packet
- Indicate which nodes have been reached

ADB: Link Quality Aware Delegation

- Add link quality into footers *
- Avoid transmission over poor links when possible

* E.g., four bit link estimation, STLE

Summary of ADB Features

- Link quality aware delegation \rightarrow less redundancy
- No long occupation of the medium \rightarrow shorter delivery latency Optimal latency in a collision- and error- free network, proved in the paper No dependency on forwarding tree \rightarrow broadcasts from any node

> No reached node, poor links to R1 and R2

Encoding of ADB Control Information

Use two-hop neighbor list build an ADB footer

- Length of a ADB footer is 3 bits × (# of direct neighbors of a sending node)
- Memory complexity O(D²), D is max node degree

ADB Evaluation

ns-2 simulation-based evaluation

- 100 random networks (50 nodes in 1km x 1km area)
 - Default ns-2 channel model
 - A new channel model with increased packet losses (in the paper)
- TinyOS-based implementation and evaluation on MICAz motes
 - □ A clique network (in the paper)
 - □ A 10-node "random" network

Evaluation Parameters

- 1-second average wakeup interval
- 28-byte DATA frames
- □ 3 bits for status of each node in a ADB footer
- A lightweight link quality estimation mechanism that takes advantage of the beacons used by RI-MAC
- Radio and MAC parameters from the UPMA paper and the RI-MAC paper
- Simulation-specific: 250 m transmission range and 550 m carrier sensing range (default ns-2 parameters)

Delivery Ratios

Delivery Ratios

CDF of Average Duty Cycles

CDF of Packet Delivery Latency

How Close to Optimal Latency?

Message Overhead (# of Data Transmissions)

A "Random" Network: Nodes below Wall Power Outlets with Node 1 as Traffic Generator

- ADB implementation in TinyOS on MICAz motes
- 75 broadcasts generated with 20-second interval

Experimental Results

Overall performance comparison

	X-MAC-UPMA	ADB
Average duty cycle (%)	27.00	2.77
Delivery ratio	99.47	99.47
Average latency (s)	0.71	0.64

Duty cycles at each node

Node ID	1	2	3	4	5	6	7	8	9	10
X-MAC-UPMA	22.8	25.8	25.5	28.2	24.9	26.9	28.2	29.3	29.6	28.8
ADB	7.2	4.8	2.5	1.9	3.6	1.5	1.7	1.1	2.0	1.4

Other Related Work

- Existing Schemes are not Optimized for Asynchronous Duty Cycling
 - In wireless ad hoc and mesh networks: simple flooding, counter-based schemes, CDS based schemes, …
 - □ In wireless sensor networks: Trickle, Dip, RBP, ...
- Work Focusing on Asynchronous Duty Cycling
 - F. Wang and J. Liu at ICC '08 and INFOCOM '09
 - Assuming future wake-up schedules of 2-hop neighbors
 - Only focused on scheduling, not clear on how to support unicast
 - □ S. Guo and et al. at MobiCom '09 (6 weeks ago)
 - Assuming future wake-up schedules of 1-hop neighbors
 - Assuming an energy-optimal tree

Conclusion

ADB is a multihop broadcast protocol for asynchronous duty-cycling

- Dissemination of progress information of the broadcast
- Unicast-based broadcast with link quality-aware delegation
- Supports broadcast from any node without knowing wakeup schedules of nodes
- Evaluated in *ns-2* and TinyOS/MICAz
 - Achieves close to optimal delivery latency
 - Shows lower duty cycle than flooding with X-MAC and with RI-MAC
 - Achieves greater than 99% delivery ratios

